МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ И РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИАТЭ НИЯУ МИФИ НИЯУ МИФИ)

УТВЕРЖДАЮ		
И. о. директора	а ИКТЭ НИЯУ	МИФИ
нияу мифи		_T.A.
Осипова «	»	2020 г.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ – СОБЕСЕДОВАНИЯ ДЛЯ МАГИСТЕРСКОЙ ПРОГРАММЫ

Направление подготовки **01.04.02 Прикладная математика и информатика Программа** «МАТЕМАТИЧЕСКАЯ ФИЗИКА И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ»

СОГЛАСОВАНО

Председатель аттестацион	ной комиссии
Доцент отделения ИИКС	
	Ермаков С.В.
Члены аттестационной ко профессор отделения ИИН	
	Камаев Д.А.
профессор отделения ИИН	КС
	Старков
$C \Omega$	

Обнинск 2020

1. Цели и задачи вступительных испытаний

Вступительные испытания предназначены для определения практической и теоретической подготовленности кандидата (бакалавра или специалиста) и проводятся с целью определения соответствия знаний, умений и навыков студентов требованиям обучения в магистратуре по программе Математическая физика и математическое моделирование, направление подготовки 01.04.02 — Прикладная математика и информатика

2. Содержание вступительных испытаний

Вступительные испытания в магистратуру по программе **Математическая** физика и математическое моделирование, направление подготовки 01.04.02 — Прикладная математика и информатика проводятся по следующим разделам:

- 1. Оценка соответствия профиля и уровня полученного образования.
- 2. Подготовленность к научно-исследовательской работе.
- 3. Оценка уровня знаний в области прикладной математики и информатики.

3. Оценка соответствия профиля и уровня полученного образования

По предоставленным материалам и собеседованию учитываются:

- 1. Биографические данные абитуриента; успеваемость в вузе; соответствие полученного образования выбранному направлению подготовки магистратуры (профильность).
- 2. Мотивы выбора профессии; представления о сфере и направлениях будущей профессиональной деятельности; общая ориентация в профессиональной проблематике.
- 3. Способность к обучению, дисциплинированность, организованность, ответственность, способность к творческой деятельности; уровень самостоятельности в принятии решений (самооценка личностных качеств). Представление о будущей профессиональной карьере.

Отдельно принимаются во внимание:

- 1. Наличие диплома с отличием.
- 2. Наличие стажа работы по профилю направления.
- 3. Благодарственные грамоты и сертификаты.

4. Подготовленность к научно-исследовательской работе

По предоставленным материалам и собеседованию учитываются:

- 1. Наличие согласия научного руководителя в ИАТЭ НИЯУ МИФИ или в одном из НИИ Обнинска и других городов (обязательное условие).
- 2. Наличие рекомендации ГАК на поступление в магистратуру.
- 3. Опыт участия в научно-исследовательских работах.
- 4. Наличие публикаций и выступлений на конференциях.
- 5. Участие в конкурсах и грантах.

5. Оценка уровня знаний

Оценка уровня знаний проводится в виде вступительного экзамена. В основу программы вступительного экзамена положены квалификационные требования в

области прикладной математики и информатики, предъявляемых бакалаврам направления 01.03.02- Прикладная математика и информатика.

Темы и вопросы вступительного экзамена в магистратуру

- 1. Элементы теории множеств. Операции над множествами.
- 2. Непрерывность функции в точке. Классификация точек разрыва.
- 3. Производная и дифференциал. Формулы для суммы, произведения и частного. Производная сложной функции.
- 4. Правило Лопиталя для вычисления предела.
- 5. Разложение функции в ряд. Формула Тейлора.
- 6. Исследование графиков функций. Необходимые и достаточные условия экстремума. Точки перегиба, асимптоты.
- 7. Неопределенный интеграл. Интегрирование элементарных функций.
- 8. Определенный интеграл Римана. Формула Ньютона-Лейбница. Интегрирование по частям.
- 9. Последовательности в R_n . Предельные точки множества. Открытые и замкнутые множества.
- 10. Частные производные. Производная сложной функции. Производная по направлению. Градиент.
- 11. Экстремум функции. Необходимые и достаточные условия экстремума.
- 12. Числовые ряды. Признаки сходимости Коши и Даламбера. Интегральный
- 13. Двойные интегралы. Сведение двойных интегралов к повторным интегралам.
- 14. Ряды Фурье. Преобразование Фурье.
- 15. Интеграл Лебега и его связь с интегралом Римана. Интеграл Лебега-Стилтьеса.
- 16. Линейное пространство. Линейная зависимость векторов.
- 17. Линейные операторы. Ядро оператора. Собственные значения и собственные векторы.
- 18. Линейные операторы в евклидовом пространстве. Сопряженные и самосопряженные операторы.
- 19. Интегральные операторы Гильберта-Шмидта. Теоремы Фредгольма для интегральных уравнений.
- 20. Принцип сжимающих отображений. Примеры приложений к дифференциальным и интегральным уравнениям.
- 21. Метрические пространства. Непрерывные отображения метрических пространств. Гомеоморфизм.
- 22. Функция Грина для задачи Дирихле. Формула Пуассона для шара.
- 23. Уравнения теплопроводности и диффузии. Решение основных краевых задач о распространении тепла.
- 24. Принцип максимума для уравнения теплопроводности.

- 25. Задача о распространении волн в пространстве. Формула Пуассона.
- 26. Уравнение колебаний струны. Задача на бесконечной струне. Формула Даламбера.
- 27. Задача на ограниченной струне. Метод Фурье.
- 28. Случайные величины. Функция распределения, ее свойства. Независимые случайные величины. Математическое ожидание. Дисперсия.
- 29. Неравенство Чебышева. Закон больших чисел в форме Чебышёва и в форме Хинчина.
- 30. Центральная предельная теорема (ЦПТ). Теорема Муавра Лапласа.
- 31. Вычисление определенных интегралов и вероятности случайного события методом статистических испытаний (метод Монте-Карло).
- 32. Условная функция распределения. Условная плотность. Условное математическое ожидание, его свойства.
- 33. Проверка гипотез. Этапы построения критерия. Ошибки первого и второго рода. Мощность критерия. Критерий χ^2 : теорема Пирсона, теорема Фишера.
- 34. Проверка гипотез. Лемма Неймана Пирсона.
- 35. Точечные и интервальные оценки параметров распределения. Применение ЦПТ к задаче построения доверительных интервалов.

Рекомендуемая литература

- 1. Ильин В.А., Позняк Э.Г. Основы математического анализа: В 2-х ч. Часть 1: Учеб: Для вузов. 7-е изд. М.: ФИЗМАТЛИТ, 2005. 648 с. (Курс высшей математики и математической физики)
- 2. Ильин В.А., Позняк Э.Г. Основы математического анализа: В 2-х ч. Часть 2: Учеб.: Для вузов. 4-е изд. М.: ФИЗМАТЛИТ, 2002. 464 с. (Курс высшей математики и математической физики)
- 3. Ильин В.А., Позняк Э.Г. Линейная алгебра: Учеб.: Для вузов. 6-е изд., стер. . М.: ФИЗМАТЛИТ, 2005. 280 с. . (Курс высшей математики и математической физики)
- 4. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 424 с.
- 5. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. 7-е изд. М:, URSS, 2019. —572 с.
- 6. Тихонов А.Н., Самарский А.А. Уравнения математической физики. 7-е изд. М.: Наука, 2004. 798 с.
- 7. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981—512 с.
- 8. Боровков А.А. Теория вероятностей М.: Эдиториал УРСС, 1999. 472 с.
- 9. Крамер Г. Математические методы статистики. М.: МИР, 1975. 648 с.

Образцы билетов

Билет №

- 1. Элементы теории множеств. Операции над множествами.
- 2. Случайные величины. Функция распределения, ее свойства. Математическое ожидание. Дисперсия.

Билет №

- 1. Последовательности в R_n . Предельные точки множества. Открытые и замкнутые множества.
- 2. Неравенство Чебышева. Закон больших чисел в форме Чебышёва и в форме Хинчина.

Билет №

- 1. Непрерывность функции в точке. Классификация точек разрыва.
- 2. Центральная предельная теорема (ЦПТ). Теорема Муавра Лапласа.

Билет №

- 1. Производная и дифференциал. Формулы для суммы, произведения и частного. Производная сложной функции.
- 2. Проверка гипотез. Лемма Неймана Пирсона.

Билет №

- 1. Исследование графиков функций. Необходимые и достаточные условия экстремума. Точки перегиба, асимптоты.
- 2. Условная функция распределения. Условная плотность. Условное математическое ожидание, его свойства.

Билет №

- 1. Неопределенный интеграл. Основные методы интегрирования. Интегрирование элементарных функций.
- 2. Проверка гипотез. Этапы построения критерия. Ошибки первого и второго рода. Мощность критерия.

Билет №

- 1. Определенный интеграл. Формула Ньютона-Лейбница. Интегрирование по частям.
- 2. Уравнение колебаний струны. Задача на бесконечной струне. Формула Даламбера.

Билет №

- 1. Числовые ряды. Ряды с неотрицательными членами. Признаки сходимости Коши и Даламбера. Интегральный признак.
- 2. Проверка гипотез. Критерий χ^2 : теорема Пирсона, теорема Фишера.

Билет №

- 1. Двойные, тройные. Сведение двойного интеграла к повторным интегралам.
- 2. Проверка гипотез. Лемма Неймана Пирсона.

Билет №

- 1. Метрические пространства.
- 2. Применение ЦПТ к задаче построения доверительных интервалов.

Билет №

- 1. Уравнения теплопроводности и диффузии. Решение основных краевых задач о распространении тепла.
- 2. Ряды Фурье. Преобразование Фурье.

6. Критерии выставления оценки по результатам испытания

Общая оценка подсчитывается по 100 балльной шкале как сумма баллов по всем разделам вступительных испытаний. Испытание считается успешно пройденным при 60 и более баллах.

При прочих равных условиях предпочтение отдается кандидату с максимальным баллом по разделу 2.

Таблица 2 – Таблица начисления баллов по критериям

№ п/п	Раздел	Критерий	Балл
1 Соответствие профиля и уровня полученного образования	Наличие диплома с отличием.	10	
	Благодарственные грамоты и сертификаты.	5	
	Наличие стажа работы по профилю направления.	5	
2 Подготовленность к научно-исследовательской работе	Участие в научно- исследовательских работах.	5	
	Публикации и выступления на конференциях.	5	
	Участие в конкурсах и грантах.	5	
	Рекомендация ГАК на поступление в магистратуру	5	
3 Оценка уровня знан	Оценка уровня знаний	Ответ на первый вопрос билета	25
		Ответ на второй вопрос билета	25
		Ответ на дополнительный вопрос	10